Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Vet Med Sci ; 85(11): 1180-1189, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37766550

RESUMEN

In the winter of 2021-2022, multiple subtypes (H5N8 and H5N1) of high pathogenicity avian influenza viruses (HPAIVs) were confirmed to be circulating simultaneously in Japan. Here, we phylogenetically and antigenically analyzed HPAIVs that were isolated from infected wild birds, an epidemiological investigation of affected poultry farms, and our own active surveillance study. H5 subtype hemagglutinin (HA) genes of 32 representative HPAIV isolates were classified into clade 2.3.4.4b lineage and subsequently divided into three groups (G2a, G2b, and G2d). All H5N8 HPAIVs were isolated in early winter and had HA genes belonging to the G2a group. H5N1 HPAIVs belong to the G2b and G2d groups. Although G2b viruses were widespread throughout the season, G2d viruses endemically circulated in Northeast Japan after January 2022. Deep sequence analysis showed that the four HPAIVs isolated at the beginning of winter had both N8 and N1 subtypes of neuraminidase genes. Environmental water-derived G2a HPAIV, A/water/Tottori/NK1201-2/2021 (H5N8), has unique polymerase basic protein 1 and nucleoprotein genes, similar to those of low pathogenicity avian influenza viruses (LPAIVs). These results indicate that multiple H5 HPAIVs and LPAIVs disseminated to Japan via transboundary winter migration of wild birds, and HPAIVs with novel gene constellations could emerge in these populations. Cross-neutralization test revealed that G2a H5N8 HPAIVs were antigenically distinct from a G2b H5N1 HPAIV, suggesting that antibody pressure in wild birds was involved in the transition of the HPAIV groups during the season.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Subtipo H5N8 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Animales , Aves de Corral , Subtipo H5N8 del Virus de la Influenza A/genética , Japón/epidemiología , Virulencia , Granjas , Estaciones del Año , Aves , Animales Salvajes , Gripe Aviar/epidemiología , Virus de la Influenza A/genética , Agua , Filogenia
2.
J Virol Methods ; 319: 114753, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37209781

RESUMEN

Foot-and-mouth disease (FMD) is a highly contagious viral vesicular disease, causing devastating losses to the livestock industry. A diagnostic method that enables quick decisions is required to control the disease, especially in FMD-free countries. Although conventional real-time reverse transcription polymerase chain reaction (RT-PCR) is a highly sensitive method widely used for the diagnosis of FMD, a time lag caused by the transport of samples to a laboratory may allow the spread of FMD. Here, we evaluated a real-time RT-PCR system using a portable PicoGene PCR1100 device for FMD diagnosis. This system could detect the synthetic FMD viral RNA within 20 min with high sensitivity compared to a conventional real-time RT-PCR. Furthermore, the Lysis Buffer S for crude nucleic extraction improved the viral RNA detection of this system in a homogenate of vesicular epithelium samples collected from FMD virus-infected animals. Furthermore, this system could detect the viral RNA in crude extracts prepared using the Lysis Buffer S from the vesicular epithelium samples homogenized using a Finger Masher tube, which allows easy homogenization without any equipment, with a high correlation compared to the standard method. Thus, the PicoGene device system can be utilized for the rapid and pen-side diagnosis of FMD.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Fiebre Aftosa/diagnóstico , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sensibilidad y Especificidad , Virus de la Fiebre Aftosa/genética , ARN Viral/genética
3.
Mol Biol Cell ; 33(3): ar21, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35044867

RESUMEN

Collagen is the major protein component of the extracellular matrix. Synthesis of procollagens starts in the endoplasmic reticulum (ER), and three α chains form a rigid triple helix 300-400 nm in length. It remains unclear how such a large cargo is transported from the ER to the Golgi apparatus. In this study, to elucidate the intracellular transport of fibril-forming collagens, we fused cysteine-free GFP to the N-telopeptide region of procollagen III (GFP-COL3A1) and analyzed transport by live-cell imaging. We found that the maturation dynamics of procollagen III was largely different from that of network-forming procollagen IV. Proline hydroxylation of procollagen III uniquely triggered the formation of intralumenal droplet-like structures, similarly to events caused by liquid-liquid phase separation, and ER exit sites surrounded large droplets containing chaperones. Procollagen III was transported to the Golgi apparatus via vesicular and tubular carriers containing ERGIC53 and RAB1B; this process required TANGO1 and CUL3, which we previously reported to be dispensable for procollagen IV. GFP-COL3A1 and mCherry-α1AT were cotransported in the same vesicle. Based on these findings, we propose that shortly after ER exit, enlarged carriers containing procollagen III fuse to ERGIC for transport to the Golgi apparatus by conventional cargo carriers.


Asunto(s)
Aparato de Golgi , Procolágeno , Transporte Biológico , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Procolágeno/metabolismo , Transporte de Proteínas
4.
Cell Struct Funct ; 45(2): 107-119, 2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32554938

RESUMEN

Collagen is the most abundant protein in animal tissues and is critical for their proper organization. Nascent procollagens in the endoplasmic reticulum (ER) are considered too large to be loaded into coat protein complex II (COPII) vesicles, which have a diameter of 60-80 nm, for exit from the ER and transport to the Golgi complex. To study the transport mechanism of procollagen IV, which generates basement membranes, we introduced a cysteine-free GFP tag at the N-terminus of the triple helical region of the α1(IV) chain (cfSGFP2-col4a1), and examined the dynamics of this protein in HT-1080 cells, which produce endogenous collagen IV. cfSGFP2-col4a1 was transported from the ER to the Golgi by vesicles, which were a similar size as small cargo carriers. However, mCherry-ERGIC53 was recruited to α1-antitrypsin-containing vesicles, but not to cfSGFP2-col4a1-containing vesicles. Knockdown analysis revealed that Sar1 and SLY1/SCFD1 were required for transport of cfSGFP2-col4a1. TANGO1, CUL3, and KLHL12 were not necessary for the ER-to-Golgi trafficking of procollagen IV. Our data suggest that procollagen IV is exported from the ER via an enlarged COPII coat carrier and is transported to the Golgi by unique transport vesicles without recruitment of ER-Golgi intermediate compartment membranes.Key words: collagen, procollagen IV, endoplasmic reticulum, ER-to-Golgi transport, ERGIC.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Colágeno Tipo IV/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/genética , Línea Celular Tumoral , Colágeno Tipo IV/genética , Retículo Endoplásmico/genética , Aparato de Golgi/genética , Humanos , Transporte de Proteínas
5.
J Pharm Biomed Anal ; 116: 109-15, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25596033

RESUMEN

D-Aspartate (D-Asp), a free D-amino acid found in mammals, plays crucial roles in the central nervous, neuroendocrine, and endocrine systems. In mammalian tissues, D-Asp oxidase (DDO) is a degradative enzyme that stereospecifically acts on D-Asp. Asp racemase, a synthetic enzyme that produces D-Asp from L-Asp, has been identified in several lower organisms; however, the biosynthetic pathway of D-Asp in mammals remains to be fully clarified. The aim of this study was to establish a simple, accurate, and sensitive enzymatic method for the determination of Asp racemase activity. Using recombinant Streptococcus thermophilus Asp racemase as a model enzyme, two enzymatic methods for the determination of Asp racemase activity were optimized. In these methods, recombinant human DDO was used to degrade D-Asp formed from L-Asp by the Asp racemase reaction to 2-oxo acid, the amounts of which were then determined using a colorimetric assay. In one method, designated the coupling method, DDO was concomitantly included in the Asp racemase reaction mixture, and the Asp racemase reaction was readily coupled to the D-Asp degradative reaction by DDO during the incubation. In the other method, designated the separating method, an aliquot of the Asp racemase reaction mixture was mixed with DDO after the reaction to determine the amounts of D-Asp produced by Asp racemase. Under optimized conditions, the accuracy and sensitivity of these two methods were examined and compared, both to one another and conventional high-performance liquid chromatography (HPLC). The results presented here suggest that the coupling method is more accurate and sensitive than the other two methods and can be used for the determination of Asp racemase activity. The coupling method may help to advance our current understanding of the biosynthetic pathway of D-Asp in mammals.


Asunto(s)
Isomerasas de Aminoácido/análisis , Isomerasas de Aminoácido/metabolismo , Ácido Aspártico/análisis , Ácido Aspártico/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Activación Enzimática/fisiología , Humanos , Streptococcus thermophilus/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...